Kategoriler KPSS Kitapları Yayınevleri Yazarlar Mağazalar Banka Hesaplarımız İletişim Formu Sipariş TakibiMağaza Aç
ARA
Satıcı Puanı: 9,9
Kitapsec.com müşterileri tarafından verilen zamanında gönderim, paketleme ve genel alışveriş deneyimi puanlarına göre satıcı puanı hesaplanmaktadır. Değerlendirmeler son 6 ay içerisinde yapılan değerlendirme sayısını vermektedir.

R Yazılımı ile Tarım Bilimlerinde Regresyon ve Sınıflandırma Tipi Problemlerin Çözümünde Mars Algoritması Nobel Yayınevi

R Yazılımı ile Tarım Bilimlerinde Regresyon ve Sınıflandırma Tipi Problemlerin Çözümünde Mars Algoritması Nobel Yayınevi | 9786254390784
Üretici Liste Fiyatı: 210.00 TL
Kitapseç Fiyatı:190.00 TL
ISBN / BARKOD
:
9786254390784
Mağaza
:
Yayınevi / Marka
:
Yazar
:
Kazancınız
:
20.00 TL
Kazanacağınız Puan
:
190 Puan
Sayfa Sayısı
:
264
Kitap Ebatı
:
19x27
Kargo İndirimi
:
699 TL üzeri Kargo BEDAVA
Tedarik Süresi
:
En geç 24 Aralık Salı gününe kadar
Bu ürün size KitapSeç
KİTAPSEÇ PAZARYERİ
Tüm satıcılarımız Kitapseç hizmet standartlarını garanti eder.
Ücretsiz İade
Hızlı Teslimat
Müşteri Desteği
Satıcı: KitapSeç
Satıcı Ünvanı: ADRES7 Elektronik Ticaret ve Bilişim Hizmetleri Anonim Şirketi
İletişim: Satıcıların iletişim e-posta adresi kitapsec tarafından kayıt altındadır.
tarafından gönderilecektir.

R Yazılımı ile Tarım Bilimlerinde Regresyon ve Sınıflandırma Tipi Problemlerin Çözümünde Mars Algoritması Nobel Yayınevi

Bilgisayar teknolojisindeki gelişmelere paralel olarak, regresyon ve sınıflandırma tipi problemlerin çözümlenmesi açısından veri madenciliği (data mining) ve yapay sinir ağları (Artificial Neural Networks) algoritmalarının kullanımı son yıllarda önem kazanmaktadır. Bu bağlamda, CART (Classification and Regression Tree), CHAID (Chi-Square Automatic Interaction Detector) ve Exhaustive CHAID gibi ağaç yapısına dayalı veri madenciliği algoritmaları pratikte yaygın olarak kullanılmaktadır. Gerek regresyon gerekse sınıflandırma tipi problemlerin çözüme kavuşturulması açısından karmaşık ilişkilerin ortaya konulmasında yapay sinir ağları algoritmalarının oldukça etkin ve yüksek tahmin performansı gösterdiği bilinmektedir. Son yıllarda yapılan istatistiksel modelleme çalışmalarında, karar ağaçları, yapay sinir ağları ve MARS (Multivariate Adaptive Regression Splines) algoritmalarının tahmin performansları karşılaştırılmalı olarak incelenmektedir. CART algoritmasının modifiye edilmiş bir formu olan MARS algoritması, ele alınan değişkenler arasındaki yüksek dereceli ilişkilerin tanımlanması bakımından araştırıcıların ilgi odağı olmuştur. Sadece değişkenlerin dağılımına ilişkin değil aynı zamanda değişkenler arasındaki fonksiyonel ilişkilere ilişkin varsayıma ihtiyaç duymaması ve bunun yanısıra değişkenler arasındaki yüksek boyutlu ilişkileri gösteren bir denklem sağlaması MARS algoritmasını oldukça popüler kılmaktadır. Bu üstün yönlerinden dolayı, etki faktörü (impact factor) yüksek olan SCI kapsamındaki ziraat, ekonomi, tıp ve mühendislik dergilerinde MARS algoritmasının yaygın olarak kullanıldığı görülmektedir.
MARS algoritmasının uygulamalarına ilişkin literatür incelendiğinde yabancı dilde yazılmış referans kaynakların olduğu görülmektedir. Ne yazık ki, MARS modellemesi ile ilgili Türkçe bir kitabın olmadığı tespit edilmiştir. Literatürdeki bu açığı kapatmak üzere MARS algoritması ile ilgili Türkçe bir kaynağın yazılmasına ihtiyaç duyulmuştur. Bu nedenle araştırmacı odaklı olarak yazılan ve tasarlanan “R yazılımı ile Tarım Bilimlerinde Regresyon ve Sınıflandırma Tipi Problemlerin Çözümünde MARS Algoritması” isimli bu kitapta; (1) MARS algoritmasına ve uyum iyiliği ölçütlerine ait teorik bilgilerin verilmesi, (2) MARS algoritmasına ait ideal ayar parametrelerinin belirlenmesi, (3) Etkin bir MARS çözümlemesi için earth ve caret paketlerinin kullanılması ile ilgili önemli noktaların verilmesi, (4) Aşırı uyum (overfitting) probleminin giderilmesine ilişkin bazı püf noktaların verilmesi, (5) Bir ya da birden fazla sürekli bağımlı değişken için MARS modellemesinin nasıl yapılacağı, analiz çıktılarının nasıl yorumlanacağı ile ilgili önemli bilgilerin verilmesi, (6) Çapraz geçerlilik ve eğitim-test setleri için MARS komut dosyalarının oluşturulması ile ilgili pratik bilgilerin verilmesi, (7) Sürekli bağımlı değişken üzerinde etkili olan kategorik bağımsız değişkenlerin nasıl yorumlanacağı konusunda bilgiler verilmesi, (8) Caret paketinde farklı yeniden örnekleme yöntemleri ile ayar parametrelerinin optimizasyonuna ilişkin faydalı bilgiler verilmesi, (9) Tek sürekli bağımlı değişkenin tahmin edilmesi kapsamında MARS ile BRNN (Bayesian Regularized Neural Network) algoritmalarına ilişkin R script dosyalarının verilmesi ve (10) İkili lojistik regresyon (binary logistic regression) analizi kapsamında MARS algoritmasının kullanımına ilişkin önemli detayların verilmesi, (11) Bagging MARS algoritması ile ilgili R script dosyalarının oluşturulması ve (12) Regresyon tipi problemler kapsamında kurulan modellere ait uyum iyiliği ölçütlerinin hesaplanması için geliştirilen ehaGoF paketinin tanıtılması amaçlanmıştır.
Sınıflandırma ve regresyon tipi problemlerin MARS algoritması ile çözümlenmesi konusunda yazılmış olan bu kitabın tüm araştırıcılara faydalı olmasını dileriz.

Bu Ürün Bugün 13 defa
Ziyaret Edilmiştir...
Kategoriye Ait En Çok Satan Ürünler
BAŞA DÖN